Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho hàm số \(y=\dfrac{1}{x-1}\) có đồ thị như Hình 1.

a) Tìm \(\lim\limits_{x\rightarrow1^+}\dfrac{1}{x-1},\lim\limits_{x\rightarrow1^-}\dfrac{1}{x-1}\).

b) Gọi M là điểm trên đồ thị có hoành độ x. Đường thẳng đi qua M và vuông góc với trục Oy cắt đường thẳng x = 1 tại điểm N. Tính MN theo x và nhận xét về MN khi x → 1+; x → 1.

datcoder
28 tháng 10 lúc 22:53

a) Từ đồ thị ta thấy:

Khi x tiến dần tới 1 về bên phải thì y tiến dần đến \( + \infty \), vậy \(\mathop {\lim }\limits_{x \to {1^ + }}  = \frac{1}{{x - 1}} =  + \infty \)

Khi x tiến dần tới 1 về bên trái thì y tiến dần đến \( - \infty \), vậy \(\mathop {\lim }\limits_{x \to {1^ - }}  = \frac{1}{{x - 1}} =  - \infty \)

b) MN = x – 1

Khi \(x \to {1^ + }\) thì MN tiến dần về \( + \infty \) và khi \(x \to {1^ - }\) thì MN tiến dần về \( - \infty \)