cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1
cho hàm số \(y=x^2-2x+2\) có đồ thị là Parabol (P) và đường thẳng d:\(y=x+m\). Gọi \(m_o\) là giá trị của m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(OA^2+OB^2=10\). Tìm m
1. Cho hàm số : y=x2 - 3mx + m2 + 1 (1) ,m là tham số
a, Cho dt (d) y= mx + m2 . tìm m để đồ thị (1) cắt (d) tại 2 điểm phân biệt có hoành độ x1 ,x2 thoả mãn \(\left|\sqrt{x_1}-\sqrt{x_2}\right|\)
a) lập bảng biến thiên và vẽ đồ thị hàm số y = x\(^2\)+3x+2
b) tìm m để đường thẳng y = -x+m cắt (P) tại 2 điểm phân biệt có hoành độ dương
c) tìm m để đường thẳng y = -2x+3m cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn x\(_1\)= 3x\(_2\)
cho hàm số =-x^2+2x có đồ thị (P). Tìm m để đường thẳng d:y= m cắt đồ thị hàm số đã cho tại 2 điểm phân biệt A và B sao cho các điểm này đều có hoành độ dương
Cho parabol (P): \(y=2x^2+6x-1\)
Tìm giá trị của k để đường thẳng Δ: \(y=x\left(k+6\right)+1\) cắt parabol tại hai điểm phân biệt M,N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: \(4x+2y-3=0\)
Cho hàm số \(y=x^2+2mx-3m\) và hàm số \(y=-2x+3\). Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = \(4\sqrt{5}\)
cho parabol (P) : y= -x2 -1 và đường thẳng (d) đi qua điểm I (0;-2) và có hệ số góc k
a) tìm k để (d) cắt (P) tại 2 điểm phân biệt
b) gọi A,B là các giao điểm của (d) và (p) và có hoành độ lầ lượt là x1,x2 , tìm k để trung điểm của đoạn thẳng AB nằm trên trục tung
lập bảng biến thiên và vẽ đồ thị hàm số: -x^2+4x. xác định m để p cắt đường thẳng y=x+m tại hai điểm phân biệt A, B sao cho AB=5