Bài 4: Ôn tập chương nguyên hàm, tích phân và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyệt

Cho hàm số y = f(x) liên tục trên \(\left[0;2\right]\), thỏa mãn các điều kiện f(2) = 1 và \(\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left[f'\left(x\right)\right]^2dx=\dfrac{2}{3}\) Giá trị của f(1) bằng

Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:56

Khi gặp dạng này, ý tưởng là sẽ tìm 1 hàm u(x) sao cho:

\(\int\limits^b_a\left[f'\left(x\right)-u\left(x\right)\right]^2dx=0\) (1)

\(\Rightarrow f'\left(x\right)-u\left(x\right)=0\Rightarrow f'\left(x\right)=u\left(x\right)\)

Khai triển (1), đề cho sẵn \(\left[f'\left(x\right)\right]^2\)  nên đại lượng \(2u\left(x\right).f'\left(x\right)\) và hàm \(u\left(x\right)\) sẽ được suy ra từ việc tích phân từng phần \(\int\limits f\left(x\right)dx\). Cụ thể:

Xét \(I=\dfrac{2}{3}=\int\limits^2_0f\left(x\right)dx\)  

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.f\left(x\right)|^2_0-\int\limits^2_0xf'\left(x\right)dx=2-\int\limits^2_0xf'\left(x\right)dx\)

\(\Rightarrow\int\limits^2_0xf'\left(x\right)dx=2-\dfrac{2}{3}=\dfrac{4}{3}\) (2)

(Vậy đến đây hàm \(u\left(x\right)\) được xác định là dạng \(u\left(x\right)=k.x\)

Để tìm cụ thể giá trị k:

Từ (1) ta suy luận tiếp:

\(\int\limits^2_0\left[f'\left(x\right)-kx\right]^2dx=0\Leftrightarrow\int\limits^2_0\left[f'\left(x\right)\right]^2-2k\int\limits^2_0x.f'\left(x\right)dx+\int\limits^2_0k^2x^2dx=0\)

\(\Leftrightarrow\dfrac{2}{3}-2k.\dfrac{4}{3}+\dfrac{8}{3}k^2=0\) do \(\int\limits^2_0x^2dx=\dfrac{8}{3}\)

\(\Rightarrow k=\dfrac{1}{2}\) 

\(\Rightarrow u\left(x\right)=\dfrac{1}{2}x\) coi như xong bài toán)

Do đó ta có:

\(\int\limits^2_0\left[f'\left(x\right)\right]^2-\int\limits^2_0xf'\left(x\right)+\dfrac{1}{4}\int\limits^2_0x^2dx=\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{1}{4}.\dfrac{8}{3}=0\)

\(\Rightarrow\int\limits^2_0\left[f'\left(x\right)-\dfrac{1}{2}x\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)-\dfrac{1}{2}x=0\)

\(\Rightarrow f'\left(x\right)=\dfrac{1}{2}x\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2+C\)

Thay \(x=2\Rightarrow1=1+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lê Hoài Sa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết