1: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2-2x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x^2-4x+3=0\)
=>x=1 hoặc x=3
kHi x=1 thì y=1/2
Khi x=3 thì \(y=\dfrac{1}{2}\cdot9=\dfrac{9}{2}\)
Vậy A(1;1/2); B(3;9/2)
\(OA=\sqrt{1^2+\left(\dfrac{1}{2}\right)^2}=\dfrac{\sqrt{5}}{2}\)
\(OB=\sqrt{3^2+\left(\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\left(cm\right)\)
\(AB=\sqrt{\left(3-1\right)^2+\left(\dfrac{9}{2}-\dfrac{1}{2}\right)^2}=2\sqrt{5}\)
\(C_{AOB}=\dfrac{\sqrt{5}}{2}+\dfrac{3\sqrt{13}}{2}+\dfrac{4\sqrt{5}}{2}=\dfrac{5\sqrt{5}+3\sqrt{13}}{2}\left(đvđd\right)\)