a) Ta có:\(f\left(x\right)=\frac{x+2}{x-1}\)
f(7)=\(\frac{7+2}{7-1}=\frac{5}{6}\)
Vậy f(x)=5/6
b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\)
=> \(\frac{x+2}{x-1}=\frac{1}{4}\)
=> 4(x+2)=1(x-1)
=> 4x+8=x-1
=> 4x-x=-1-8
=> 3x=-9
=>x=-3
Vậy để f(x)=1/4 thì x=-3
c) Để \(f\left(x\right)\in Z\Rightarrow\frac{x+2}{x-1}\in Z\)
=> x+2\(⋮x-1\)
=>(x+2)-(x-1)\(⋮x-1\)
=> x+2-x+1\(⋮x-1\)
=> 3\(⋮x-1\)
=> x-1\(\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> x\(\in\left\{2;0;4;-2\right\}\)
Vậy x \(\in\left\{2;0;4;-2\right\}\)
d)