Bài 3: Hàm số liên tục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Dương Ngọc Nhi

Cho hàm số :

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}\forall x>1\\\sqrt{2};.....x=1\\\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}};....\left|x\right|< 1\end{matrix}\right.\)

Xét tính liên tục của hàm số tại x0=1

...:v
14 tháng 2 2021 lúc 11:08

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}=\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^2-1\right)^{\dfrac{1}{2}}+x-1}{\left(x-1\right)^{\dfrac{1}{2}}}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^2-1\right)^{-\dfrac{1}{2}}.2+1}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}}\)

\(=\dfrac{1}{0}=+\infty\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(\sqrt{2}+\sqrt{x+1}\right)}{[\left(\sqrt[3]{x}\right)^2+\sqrt[3]{x}+1]\left(1-x\right)}=\lim\limits_{x\rightarrow1^-}\dfrac{-\left(\sqrt{2}+\sqrt{1+1}\right)}{1+1+1}=-\dfrac{2\sqrt{2}}{3}\)

\(f\left(1\right)=\sqrt{2}\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne f\left(x\right)\)=> ham gian doan tai x=1


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Lê Nguyên Hưng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
QSDFGHJK
Xem chi tiết
10D4_Nguyễn Thị Nhật Lin...
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
James Pham
Xem chi tiết
James Pham
Xem chi tiết
Nguyễn Huệ
Xem chi tiết