D nằm trên đường trung trực của BC
nên DB=DC
E nằm trên đường trung trực của BC
nên EB=EC
Xét ΔBDE và ΔCDE có
BD=CD
DE chung
BE=CE
Do đó:ΔBDE=ΔCDE
D nằm trên đường trung trực của BC
nên DB=DC
E nằm trên đường trung trực của BC
nên EB=EC
Xét ΔBDE và ΔCDE có
BD=CD
DE chung
BE=CE
Do đó:ΔBDE=ΔCDE
Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB
Chứng minh \(\Delta AMN=\Delta BMN\)
Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB
Chứng minh \(\Delta AMN=\Delta BMN\)
Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB
Chứng minh \(\Delta AMN=\Delta BMN\)
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho CD = AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng: ΔAEB = ΔCED; AE là tia phân giác trong tại đỉnh A của ΔABC
Giúp mk vs nhq. Mk tik cho. Nếu đc thì vẽ hình giúp mk vs. Thank trc
Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng :
a) D là trung điểm của cạnh BC
b) \(\widehat{A}=\widehat{B}+\widehat{C}\)
Cho hai tam giác cân chung đáy ABC và ABD, trong đó ABC là tam giác đều. Gọi E là trung điểm của AB. Khi đó, khẳng định nào sau đây sai ?
(A) Đường thẳng CD là đường trung trực của AB
(B) Điểm E không nằm trên đường thẳng CD
(C) Đường trung trực của AC đi qua B
(D) Đường trung trực của BC đi qua A
Cho ΔABC cân tại A (∠A<90 độ). Vẽ AH ⊥ BC tại H.
a. Chứng minh ΔAHB=ΔAHB.
b. Kẻ HM ⊥ AC tại M. Trên tia đối tia HM lấy điểm N sao cho HM=HN. Chứng minh BN // AC.
c. Kẻ HQ ⊥ AB tại Q. Chứng minh BC là đường trung trực của NQ.
Cho \(\Delta\)ABC (AB<AB). Trên tia đối của CA lấy điểm D sao cho CD=AB. Các đường trung trực của BC và AD cắt nhau tại I. Chứng minh rằng:
A) IA=ID; IB=IC
B) \(\Delta\)IAB=\(\Delta\)IDC
C) AI là tia phân giác góc BAC
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DEBC (EBC).Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh:
1. ABD =EBD
2. BD là đường trung trực của đoạn thẳng AE
3. AD < DC
4. và E, D, F thẳng hàng.