Giải:
a) \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+15\)
\(\Leftrightarrow P\left(x\right)=5x^5+7x-4x^2+15\)
\(\Leftrightarrow P\left(x\right)=5x^5-4x^2+7x+15\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(\Leftrightarrow Q\left(x\right)=5x^5+3x-4x^2+8\)
\(\Leftrightarrow Q\left(x\right)=5x^5-4x^2+3x+8\)
b) \(P\left(x\right)-Q\left(x\right)\)
\(=5x^5-4x^2+7x+15-\left(5x^5-4x^2+3x+8\right)\)
\(=5x^5-4x^2+7x+15-5x^5+4x^2-3x-8\)
\(=4x+7\)
Để đa thức trên có nghiệm thì
\(4x+7=0\)
\(\Leftrightarrow4x=-7\)
\(\Leftrightarrow x=-\dfrac{7}{4}\)
Vậy ...