Cho hình thang cân ABCD (AD//BC) có A = 60 độ, AD=4cm và BC=2cm. Qua B kẻ đường thẳng song song với CD cắt AD ở E.
a) Tính ED.
b) Chứng minh tam giác ABE đều.
c) Kẻ BH vuông góc AD ở H. Tính AH.
Bài 3*: Cho hình thang ABCD(AB/CD) có CD=AD+BC. Gọi Mlà điểm thuoc đáy CD sao cho: MD-AD. Chung minh: a) AMlà tia phân giác của góc A b) Tam giác BCM cân c) BK là tia phân giác của góc
cho hình thang vuông ABCD(^A=^D=90độ).Từ A kẻ AE//BC(E thuộc DC)
a/cmr AB=EC
b/cho AB=16 BC=17 DC=24 .Tính AD
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang ABCD (AB//CD) có CD= AD+BC . CMR tia phân giác của A và B cắt nhau tại một điểm thuộc CD.
Cho hình thang ABCD ( AB // CD)
a) Biết AD//BC .CMR AB=CD và AD=BC
b) Biết AB =CD .CMR AD//BC và AD =BC .
Mk cần gấp lắm...mong mb giup mk nhé ^^.
1. Hình thang ABCD (AB//CD) có B-C=60, D=4/5A. Tính các góc hthang ABCD
2.Cho hthang ABCD (AB//CD), trong đó 2 tia phân giác của 2 góc A, B cắt nhau tại điểm K thuộc đáy CD. C/m tổng 2 cạnh bên = cạnh đáy CD của hthang
3.Cho hình thang ABCD( AD//BC) có AC là tia phân giác của góc A
a) CM: AB=BC.b)chứng minh tứ giác abcd cs ab =bc và ac là tia phân giác góc a .ch/m rằng abcd là hình thang
Cho tam giác ABC vuông cân tại A, D thuộc AB, E thuộc AC sao cho AD=AE. Qua D vẽ đoạn thẳng vuông góc BE cắt BC tại K. Qua A vẽ đoạn thẳng vuông góc BE cắt BC tại H. Gọi M là giao điểm của DK và AC. CMR:
a) tam giác BAE = tam giác CAD (cái này mình biết làm rồi)
b) tam giác MDC cân
c) HK = HC