a: Xét ΔAOM và ΔBOM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔAOM=ΔBOM
a: Xét ΔAOM và ΔBOM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔAOM=ΔBOM
Cho góc xOy khác góc bẹt. Vẽ điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho
OA=OB. Vẽ trung điểm M của AB.
a) Chứng minh rằng: tam giác OAM=tam giác OBM
b) Chứng minh rằng OM là tia phân giác của góc xOy.
Cho góc xOy khác góc bẹt, Oz là tia phân giác của góc đó. Qua điểm M thuộc tia Oz , kẻ MA⊥Ox (A ∈ Ox ), MB⊥Oy (B ∈ Oy ).
a) chứng minh △OMA=△OMB
b) tia AM cắt tia Oy tại C, tia BM cắt tia Ox tại D. Chứng minh OC=OD
c) chứng minh OM⊥CD
cho góc xOy . Trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB . Gọi K Là Giao Điểm Của AB với tia phân giác của góc xOy . Chứng Minh Rằng
a) AK = KB
b) OK vuông góc với AB
Bài 1. Cho góc xOy , phân giác Oz. Trên các tia Ox, Oy lần lượt lấy các điểm A, B sao cho OA = OB. Lấy C bất kỳ trên tia Oz. Chứng minh rằng
a) tam giác OAC= tam giác OBC.
b) AC=BC ; ACO= BCO .
c) Gọi giao của OC và AB là I. Chứng minh rằng CI song song AB
Cho góc nhọn xoy .trên tia đối của tia ox lấy điểm a,trên tia đối của tia oy lấy điểm b sao cho oa=ob.trên tia ax lấy điểm c,trên tia by lấy điểm d sao cho ac=bd và ob<od,oa<oc
a) Chứng minh ad=bc
b) gọi e là giao điểm của advà bc.chứng minh tam giác eac= tam giác ebd
Cho góc nhọn xOy;Phân giác Oz, lấy A thuộc Ox, B thuộc Oy.Sao cho OA=OB.Lấy I thuộc Oz.Chứng minh a)tam giác AOI=tam giácBOI AB vuông góc với OY
Bài 2: (Vẽ hình) Cho \(\widehat{xOy}\). Trên tia \(Ox\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA=OB\). Gọi \(C\) là 1 điểm trên tia phân giác \(Oz\) của \(\widehat{xOy}\). Chứng minh rằng:
a, \(AC=BC\)
\(\widehat{xAC}=\widehat{yBC}\)
b, \(OC=OB\)