a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
Cho góc xoy, lấy góc A thuộc ox , B thuộc oy . Sao cho OA=OB, lấy c thuộc tia phân giác Om
a/Chứng minh △AOM=△OBM
b/ Chững minh AC=BC
C/ Chứng minh Om là đường trung trực của AB
Bài 1. Cho góc xOy , phân giác Oz. Trên các tia Ox, Oy lần lượt lấy các điểm A, B sao cho OA = OB. Lấy C bất kỳ trên tia Oz. Chứng minh rằng
a) tam giác OAC= tam giác OBC.
b) AC=BC ; ACO= BCO .
c) Gọi giao của OC và AB là I. Chứng minh rằng CI song song AB
Cho góc xOy khác góc bẹt. Vẽ điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho
OA=OB. Vẽ trung điểm M của AB.
a) Chứng minh rằng: tam giác OAM=tam giác OBM
b) Chứng minh rằng OM là tia phân giác của góc xOy.
Cho góc nhọn xOoy có tia Oz là tia phân giác. Qua điểm a thuộc tia Ox vẽ đường thẳng song song với Ox cắt Oy tại B a) Chứng minh ∆OAM=∆MOB b) Từ M kẻ MH vuông góc Oy. Chứng minh ∆MHO = ∆MKO Hộ mik với ak, Mik cảm."_"^^
cho góc xOy . Trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA = OB . Gọi K Là Giao Điểm Của AB với tia phân giác của góc xOy . Chứng Minh Rằng
a) AK = KB
b) OK vuông góc với AB
Cho góc xOy khác góc bẹt, Oz là tia phân giác của góc đó. Qua điểm M thuộc tia Oz , kẻ MA⊥Ox (A ∈ Ox ), MB⊥Oy (B ∈ Oy ).
a) chứng minh △OMA=△OMB
b) tia AM cắt tia Oy tại C, tia BM cắt tia Ox tại D. Chứng minh OC=OD
c) chứng minh OM⊥CD
Cho tia xOy , Oz là tia phân giác của góc xOy . Điểm M nằm trên tia Ox, điểm N trên tia Oy sao cho OM= ON . a, chứng minh tam giác OMP= tam giác ONP. b, Gọi H là giao điểm của MN và OP, chứng minh MN vuông góc với OP