a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, B sao cho 0 < OA < OB. TRên tia Oy lấy hai điểm C, D sao cho OC = OA, OD = OB. Gọi M là giao điểm của AD và BC, N là giao điểm của OM và BD. Chứng minh rằng :
a) tam giác OAD = tam giác OCB
b) tam giác ABM = tam giác CDM
c) OM là tia phân giác của góc xOy
d) ON vuông góc với BD
Cho góc xOy. Trên tia Ox lấy các điểm A và B, trên tia Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng AD = BC.
cho góc xoy khác góc bẹt.Trên cạnh ox lấy hai điểm A và B trên cạnh Oy lấy 2 điểm C và D sao cho OA=OC,OB=OD
a)Chứng minh tam giác OAD=tam giác OCB
b)Chứng minh tam giác ACD=tam giác CAB
Cho góc xOy. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OD = OC. Vẽ các cung tròn tâm C và tâm D có cùng bán kính sao cho chúng cắt nhau ở điểm E nằm trong góc xOy. Chứng minh rằng OE là tia phân giác của góc xOy ?
Cho góc nhọn xOy. Trên tia Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Gọi M là trung điểm của đoạn thẳng AB. Chứng minh OM là tia phân giác của góc xOy.
Cho xOy nhọn và tia phân giác Oz của . Trên tia Ox lấy A, trên tia Oy lấy B sao cho . Trên tia Oz lấy điểm M tùy ý.
a) Chứng minh: .
b) Gọi I là giao điểm của AB và Oz. Chứng minh: vuông tại I.
c) Chứng minh: MAI = MBI.
Cho góc xOy. Trên cạnh Ox lấy các điểm A và B , trên cạnh Oy lấy điểm C và D sao cho OA=OC,OB=OD. Chứng minh rằng AD=BC
cho tam giác ABC có AB=AC . Điểm D,E thuộc cạnh BC sao cho BD=DE=EC . Biết AD=AE
a.chứng minh góc EAB=góc DAC
b, gọi m là trung điểm của BC, chứng minh AM là phân giác của DAE
c,Biết DAE =60 độ . tính góc ADE ,góc AED
Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE =
EC. Biết AD = AE.
a) Chứng minh: ∆ ABE=∆ ACD.
b) Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.
c) Giả sử góc DAE bằng 60 độ , tính các góc còn lại của tam giác ADE.
d) Chứng minh: AM vuông góc với BC.