Giải:
Xét \(\Delta OAI,\Delta OBI\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(=\frac{1}{2}\widehat{O}\right)\)
OI: cạnh chung
\(\Rightarrow\Delta OAI=\Delta OBI\left(c-g-c\right)\)
Xét \(\Delta OAH,\Delta OBH\) có:
\(OA=OB\left(gt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(=\frac{1}{2}\widehat{O}\right)\)
OH: cạnh chung
\(\Rightarrow\Delta OAH=\Delta OBH\left(c-g-c\right)\)
\(\Rightarrow HA=HB\) ( cạnh t/ứng )
\(\Rightarrow\)H là trung điểm của AB
Vậy...
a) Xét t/g OAI và t/g OBI có:
OA=OB (gt)
AOI=BOI ( vì OI là p/g AOB)
OI là cạnh chung
Do đó, t/g OAI = t/g OBI (c.g.c) (đpcm)
b) Xét t/g AOH và t/g BOH có:
OA=OB (gt)
AOH=BOH ( vì OH là p/g AOB)
OH là cạnh chung
Do đó, t/g AOH = t/g BOH (c.g.c)
=> AH=BH (2 cạnh tương ứng)
=> H là trung điểm AB (đpcm)