cho tứ giác ABCD . gọi M,N lần lượt là trung điểm AB và CD .cmr:
a) 2\(\overrightarrow{mn}\)=\(\overrightarrow{AC}\)+\(\overrightarrow{BD}\)=\(\overrightarrow{BC}\)+\(\overrightarrow{AD}\)
b)Lấy H trên AD , K trên BC sao cho \(\dfrac{HA}{HD}\)=\(\dfrac{KB}{KC}\). HK cắt MN tại I .cmr I là trung điểm HK
Cho lục giác ABCDEF. Gọi M, N, P, Q, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm ?
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh rằng :
a) \(\overrightarrow{MN}=\overrightarrow{QP}\)
b) \(\overrightarrow{MP}=\overrightarrow{MN}+\overrightarrow{MQ}\)
Cho hình bình hành ABCD. Gọi E F lần lượt là trung điểm của cạnh AB và CD. Nối AF và CE, hai đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh \(\overrightarrow{DM}=\overrightarrow{MN}=\overrightarrow{NB}\) ?
Câu 1: Trong mặt phẳng Oxy, cho A(-3;-5), B(1;1), C(-1;-5)
a) Gọi G là trọng tâm tam giác ABC. Tìm tọa độ điểm I của đường thẳng BG với trục hoành
Câu2: Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AB,CD và O là trung điểm EF.
Xác định điểm I sao cho: vectơ IA +2IB+3IC=2CB
Cho 4 điểm A, B, C, D; I, F lần lượt là trung điểm BC, CD. Chứng minh: \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{FA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai cạnh bên AD và BC. Gọi I, J lần lượt là trung điểm của AB, CD
a) Tính \(\overrightarrow{OI}\) theo \(\overrightarrow{OA}\) và \(\overrightarrow{OB}\)
b) Đặt \(k=\dfrac{OD}{OA}\). Tính \(\overrightarrow{OJ}\) theo \(k\), \(\overrightarrow{OA}\) và \(\overrightarrow{OB}\). Suy ra O, I, J thẳng hàng
Cho các điểm \(A'\left(-4;1\right);B'\left(2;4\right);C'\left(2;-2\right)\) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC.
a) Tính tọa độ các đỉnh của tam giác ABC
b) Chứng minh rằng các trọng tâm của các tam giác ABC và A'B'C' trùng nhau
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)