\(sina+cosa=\frac{\sqrt{2}}{2}\Rightarrow sin^2a+cos^2a+2sina.cosa=\frac{1}{2}\)
\(\Rightarrow1+2sina.cosa=\frac{1}{2}\Rightarrow sina.cosa=\frac{-1}{4}\)
\(P=\frac{sin^2a}{cos^2a}+\frac{cos^2a}{sin^2a}=\frac{sin^4a+cos^4a}{\left(sina.cosa\right)^2}=\frac{\left(sin^2a+cos^2a\right)^2-2\left(sina.cosa\right)^2}{\left(sina.cosa\right)^2}\)
\(P=\frac{1-2.\left(\frac{-1}{4}\right)^2}{\left(-\frac{1}{4}\right)^2}=14\)