Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$