f(x) = ax^2 + bx + cf(1) = a + b + cf(-1) = a - b - cVì f(1) = f(-1) => a + b + c = a - b - c=> b = -b=> b = 0Vậy f(x) = ax^2 + bx + c = ax^2 + cf(-x) = a(-x)^2 + 0 + c = ax^2 + c=> f(x) = f(-x)
Có : \(f\left(-1\right)=f\left(1\right)\)
\(\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=a.1^2+b.1+c\)
\(\Leftrightarrow a-b+c=a+b+c\)
\(\Leftrightarrow b=0\)
Khi đó \(f\left(x\right)=\) \(a.x^2+c\) và \(f\left(-x\right)=a.\left(-x\right)^2+c=a.x^2+c\)
Do vậy \(f\left(x\right)=f\left(-x\right)\)