Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (CD gần B hơn A) của hai đường tròn. C thuộc (O) và D thuộc (O’). Gọi I là giao điểm của AB và CD, E là điểm đối xứng với B qua I. Chứng minh rằng: B, C, E, D là 4 đỉnh của một hình bình hành.
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
Cho 2 đường tròn ( O) và( O’) cắt nhau tại A và B. Vẽ tiếp tuyến chung ngoài CD
của hai đường tròn (C thuộc (O), D thuộc (O’)) sao cho AB cắt CD tại điểm I thỏa mãn A
nằm giữa B và I .
a. Chứng minh IC 2 = IA.IB.
b. Qua A vẽ đường thẳng song song với CD cắt BC, BD lần lượt tại E và F . Chứng minh
A là trung điểm của EF
Cho đường tròn O, đường kính AB. Lấy C thuộc (O) (C khác A và B). Tiếp tuyến tại A của đường tròn O cắt BC tại M.
a, CM: tam giác ABC vuông và BA2=BC.BM b, Gọi K là trung điểm của MA. CM:KC là tiếp tuyến của đường tròn O
cho nửa đường tròn tâm O đường kính AB .Trên tiếp tuyến Ax của (O) lấy C,trên tiếp tuyến By của (O) lấy D sao cho AC+BD=CD.Chứng minh CD tiếp xúc với nửa đường tròn o tại E
cho (O;R) và dây BC k qua tâm. Tiếp tuyến tại B và C của( O;R) cắt nhau tại a a) CM 4 điểm A,B,O,C cùng thuộc 1 đường tròn b) CM: OA vuông góc vs BC c) kẻ đường kính CD của (O) kẻ BH vuống góc vs CD. CMR BC là tai phân giác của góc ABH