Theo tc đường kính cắt dây cung thì CD⊥AB tại M
Mà M là trung điểm AB nên \(BM=\dfrac{1}{2}AB=8\)
Áp dụng PTG tam giác OBM: \(OB=\sqrt{OM^2+BM^2}=10\)
Theo tc đường kính cắt dây cung thì CD⊥AB tại M
Mà M là trung điểm AB nên \(BM=\dfrac{1}{2}AB=8\)
Áp dụng PTG tam giác OBM: \(OB=\sqrt{OM^2+BM^2}=10\)
Cho đường tròn(O)bán kính 5cm, dây AB =8cm. dây CD vuông góc với dây AB tại I. Tính độ dài của ICvà ID biết khoảng cách tại O đến CD bằng 3cm
Câu 1: Cho đường tròn (O; R), lấy B \(\in\) (O) gọi H là trung điểm của đoạn OB. Dây CD vuông góc với OB tại H. Tính số đo cung nhỏ và cung lớn CD
Câu 2: Cho tam giác ABC cân tại A. Vẽ (O) đường kính BC. Đường tròn (O) cắt AB và AC lần lượt tại M và N
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính \(\widehat{MON}\), biết \(\widehat{BAC}\) = \(40^o\)
Cho đường tròn (O) bán kính 5cm, dây AB = 8cm, dây CD vuông góc với AB tại I. Tính các độ dài IC, ID biết rằng khoảng cách từ O đến CD bằng 3cm
cho(O;R), đường kính AB, M là trung điểm của OA. Qua M vẽ dây cung vuong góc với AB, cắt đường tròn tại C,D.
a) chứng minh tam giác OAC đều.
b) tính ABC và cạnh CD theo R.
c) chứng minh tam giác BCD đều
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. Chứng mình 4 điểm C,H,B,K cùng thuộc 1 đường tròn'
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, D cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn (O;R) đường kính AB. Vẽ dây CD của đường tròn (O) vuông góc với OA tại trung điểm M của OA. Gọi E là trung điểm của BC.
a, C/m: O, M, C, E cùng thuộc một đường tròn
b, Tiếp tuyến tại B của đường tròn (O) cắt tia OE tại M. C/m: MC là tiếp tuyến của đường tròn (O)
c, C/m: MA2 + MB2 + MC2 + MD2 = 4R2
Cho đường tròn tâm O bán kính R và điểm M nằm bên ngoài đường tròn Qua M kẻ cát tuyến MAB với đường tròn .tìm quỹ tích trung điểm I của dây AB khi các tuyến MAB quayy quanh M
giúp mình vs ạ :(((((((((((((((((((((((((((((((((((((((