Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho đường tròn (O) đường kính AB, C là điểm thuộc đường tròn (O). Tiếp tuyến tại B,C của (O) cắt nhau tại M. OM cắt BC tại H. K là trung điểm MH, BK cắt đường tròn (O) tại E. Chứng minh A,H,E thẳng hàng
Cho đường tròn (O;R) đường kính AB, dây CD cắt đường kính AB tại điểm E (E khác A và B). Tiếp tuyến d của đường tròn tại B cắt các tia AC, AD lần lượt tại M và N
a) Chứng minh AC.AM = AD.AN = AB^2.
b) Gọi I là trung điểm của BM, chứng minh CI là tiếp tuyến của đường tròn (O).
c) Kẻ CH vuông góc AB, K là trung điểm CH. Chứng minh A,I,K thẳng hàng.
Cho đường tròn (O;R) đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn (O') có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ đây cung vuông góc với AB cắt đường tròn (O) tại D và E. Nối CD cắt đường tròn (O') Tại i
a)Tứ giác DAEB là hình gì? vì sao?
b) Chứng minh MI=MD và MI là tiếp tuyến của (O')
c) Gọi H là hình chiếu của i trên BC. Chứng minh CH.MB=BH.MC
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Giúp mình với, mình cảm ơn ạ
Câu 1. Cho hình vuông ABCD cạnh a. Gọi o là trung điểm của AB. Dựng đường tròn tâm O đường kính AB. Từ C vẽ tiếp tuyến CE với O. Đường thẳng CE cắt AD ở M. Đường thẳng OE cắt AD tại N.
a. Chứng minh: BC là tiếp tuyến của (O)
b. Chứng minh: ▲ENC = ▲DNC
c. Tính theo a chu vi của ▲EMN
Câu 2. Chứng minh bất đẳng thức:
\(\left|ac+bd\right|\le\sqrt{\left(a^2+b^2\right).\left(c^2+d^2\right)}\)
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED. a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC. b) Chứng minh: AE.AD = AC c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn