Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD.
Chứng minh rằng CH = DK ?
Cho đường tròn (O) đường kính AD. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH=DK
Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH=DK
Gợi ý: Kẻ OM vuông góc vớiCD.
giải giúp mình với.
Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK
Gợi ý : Kẻ OM vuông góc với CD
Cho đường tròn tâm O đường kính AB, dây CD không cắt AB. H , K theo thứ tự là chân các đường vuông góc kẻ từ A , B đến CD. OM ⊥ CD. Vì sao CH = DK?? Hoàng Việt Tân, giúp mình với.
Cho nửa đường tròn tâm O đường kính AB , dây CD có độ dài không đổi và khác AB . Gọi I là hình chiếu vuông góc của O trên dây CD . a) Chứng minh I là trung điểm của CD . b) Gọi H K, theo thứ tự là hình chiếu vuông góc của A B, trên CD . Chứng minh I là trung điểm của HK . c) Gọi E là hình chiếu vuông góc của I trên AB . Chứng minh rằng . Diện tích tam giác ACB.diện tích tam giác ADB=IO.AB d*) Tìm vị trí của dây CD để diện tích của tứ giác AHKB là lớn nhất? Làm ơn giúp mình câu c,d với ạ. Mình xin chân thành cảm ơn
Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF ?
Cho đường tròn (O; R), dây AB khác đường kính . Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B đến AC và AD. Chứng minh rằng :
a) Bốn điểm A, H, B, K thuộc cùng một đường tròn
b) HK < 2R
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD