Cho đường tròn tâm O, đường kính AB= 2R. Gọi d1 và d2 lần lượt là các tiếp tuyến của đường tròn (O) tại A và B . I là trung điểm của đoạn thẳng OA, E là điểm thuộc đường tròn (O) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt d1, d2 lần lượt tại M, N. 1. Chứng minh: AMEI là tứ giác nội tiếp.
Cm AMI=BIN
Cm; IB.NE=3.IE.NB
1: góc MAI+góc MEI=180 độ
=>MAIE nội tiếp
2: góc IEN+góc IBN=180 độ
=>IENB nội tiếp
MAIE nội tiếp
=>góc AMI=góc AEI
IENB nội tiếp
=>góc BIN=góc BEN
góc BEN+góc IEB=90 độ
góc AEI+góc BEI=90 độ
=>góc BEN=góc AEI
=>góc AMI=góc BIN