Cho đường tròn tâm (O) điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB và cát tuyến ACD Chứng minh AB^2=AC.AD
Từ điểm A ở ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC và cát tuyến AMN của đường tròn đó. Gọi I là trung điểm của dây MN.
a) Chứng minh: Năm điểm A, B, I, O, C cùng nằm trên một đường tròn, xác định tâm và bán kính của đường tròn này.
b) Vẽ đường kính BD. Chứng minh CD song song với OA.
1/ Từ điểm M nằm ngoài đường tròn (O), kẻ các tiếp tuyến MB, MD và 1 cát tuyến MAC ( A nằm giữa M và C ). Chứng minh: a/ MD2 = MA. MC b/ AB.CD = AD.BC
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Từ điểm M nằm ngoài đường tròn (O), vẽ tiếp tuyến MA và MB và cát tuyến MCD. a) cm: MA²=MB²=MC.MD b) cm: AC.BD=AD.BC
(Cần gấp câu b ạ, mình cảm ơn)
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
Hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A vẽ cát tuyến CAD với hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Chứng minh rằng khi cát tuyến quay xung quanh điểm A thì \(\widehat{CBD}\) có số đo không đổi
b) Từ C và D vẽ hai tiếp tuyến với đường tròn. Chứng minh rằng hai tiếp tuyến này hợp với nhau một góc có số đo không đổi khi cát tuyến CAD quay xung quanh điểm A
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (CD gần B hơn A) của hai đường tròn. C thuộc (O) và D thuộc (O’). Gọi I là giao điểm của AB và CD, E là điểm đối xứng với B qua I. Chứng minh rằng: B, C, E, D là 4 đỉnh của một hình bình hành.