Cho (O, R) đường kính AB. Gọi H là trung điểm của OA. Qua H kẻ đường thẳng vuông góc
với AB cắt (O) tại hai điểm C và D .
a/ Tứ giác ACOD là hình gì? Chứng minh?
b/ Qua điểm D kẻ tiếp tuyến với đường tròn (O) cắt tia OA tại M. Chứng minh MC là tiếp tuyến của
đường tròn (O) tại C và tam giác MCD là tam giác dều.
c/ Tính chu vi và diện tích cùa MCD theo R .
d/ Gọi N là trung điểm của HB, đường thẳng kẻ qua H vuông góc với CN cắt đường thẳng CA tại E.
Chứng minh A là trung điểm cùa CE.
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho nửa đường tròn O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M( C và D là các tiếp điểm khác H)
a) Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
b) Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
c) Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
Cho đường tròn(O;R) và điểm M thuộc đường tròn(O) . Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại A và B và cắt OM tại H.
a) Chứng minh H là trung điểm của AB và tam giác OMA đều.
b) Chứng minh tứ giác OAMB là hình thoi.
c) Tiếp tuyến tại A của (O) cắt tia OM tại C.Chứng minh CB=CA.
d) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh MN là tiếp tuyến của đường tròn (O).
Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB
a) Chứng minh rằng 3 điểm M, H,O thẳng hàng
b) Tứ giác AOBH là hình gì ?
c) Khi M di chuyển trên xy thì H di chuyển trên đường nào ?
Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi M N, lần lượt là trung điểm của các
cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn O tại P.
a) Chứng minh rằng tứ giác OMCN nội tiếp.
b) Gọi D là điểm bất kỳ trên AB D A D B , . Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm
I khác B K; là giao điểm của hai đường thẳng DI và AC. Chứng minh rằng PK PB PC PD .
c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại
E. Chứng minh rằng D di chuyển trên cạnh AB thì tỉ số AD
AE không đổi.
Cho đường tròn (O), một đường kính AB cố định, một điểm I nằm giữa A và O sao cho AI = 1/2.AO (AI = AO/2). Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN, sao cho C không trùng với M,N và B. Nối AC cắt MN tại E. a) Chứng minh tứ giác IECB nội tiếp được trong đường tròn. b) Chứng minh AM^2 = AE.AC c) Hãy xác định ví trí điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho đường tròn (O;R) đường kính AB, dây CD cắt đường kính AB tại điểm E (E khác A và B). Tiếp tuyến d của đường tròn tại B cắt các tia AC, AD lần lượt tại M và N
a) Chứng minh AC.AM = AD.AN = AB^2.
b) Gọi I là trung điểm của BM, chứng minh CI là tiếp tuyến của đường tròn (O).
c) Kẻ CH vuông góc AB, K là trung điểm CH. Chứng minh A,I,K thẳng hàng.