Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Bảo

Cho đường tròn (O, R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.

a, C/m OA vuông góc với BC và OH.OA= R2

b, Kẻ đường kính BD và đường thẳng CK vuông góc với BD tại K. C/m OA//CD và AC.CD=CK.AO

c, Gọi I là giao điểm của AD và CK. C/m tam giác BIK và tam giác CHK có diện tích bằng nhau

Nguyễn Lê Phước Thịnh
4 tháng 1 2021 lúc 23:02

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được: 

\(OH\cdot OA=OB^2\)

mà OB=R(B∈(O))

nên \(OH\cdot OA=R^2\)(đpcm)

b) Xét (O) có 

ΔBCD nội tiếp đường tròn(B,C,D∈(O))

BD là đường kính của (O)

Do đó: ΔBCD vuông tại C(Định lí)

⇒BC⊥CD tại C

Ta có: BC⊥CD(cmt)

BC⊥OA(cmt)

Do đó: OA//CD(Định lí 1 từ vuông góc tới song song)


Các câu hỏi tương tự
Lệ Đặng
Xem chi tiết
Ha Ngoc
Xem chi tiết
dhuong
Xem chi tiết
????????????????
Xem chi tiết
????????????????
Xem chi tiết
Thanh Trúc
Xem chi tiết
Thị Yến Phạm
Xem chi tiết
Bao Ngan Nguyen
Xem chi tiết
Nguyễn Thị Thúy Ngân
Xem chi tiết