Cho đường tròn tâm O bán kính R. Lấy ba điểm A, B, C trên đường tròn đó sao cho \(AB=BC=CA\). Gọi I là điểm bất kì thuộc cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI với AB. Gọi N là giao điểm của BI với AC. Chứng minh :
a) \(\widehat{ANB}=\widehat{BCI}\)
b) \(\widehat{AMC}=\widehat{CBI}\)
Cho một đường tròn (O) và hai dây cung bằng nhau AB=AC. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của hai đường thẳng AM và BC. Chứng minh góc ASC= góc MCA
cho o r từ s nằm ngoài đường tròn tâm o kẻ các tiếp tuyến sa và sa' cát tuyến sbc với (o) phân giác góc bac cắt bc tại d cắt (o) tại e gọi h là giao điểm của os và aa' g,f là giao điểm oe và aa' với bc chứng minh sa=sd,sa2=sf.sg
Câu 13. BRVT2009 Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ Ax, By vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thay đổi trên nửa đường tròn (M khác A, B), kẻ tiếp tuyến của nửa đường tròn lần lượt cắt Ax và By tại C và D. ① Chứng minh tứ giác ACMO nội tiếp được đường tròn. ② Chứng minh OC vuông góc với OD và 1/OC^2 +1/OD^2 =1/R^2. ③ Xác định vị trí của M để (AC + BD) đạt giá trị nhỏ nhất.
Cho đường tròn tâm O bán kính R và dây AB bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. E và F là hai điểm bất kì trên dây AB. Gọi C và D tương ứng là giao điểm của ME, MF với đường tròn (O)
Chứng minh:
\(\widehat{EFD}+\widehat{ECD}=180^0\)
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho tam giác ABC nội tiếp (O). Gọi P, Q , R theo thứ tự là các điểm chính giữa của các cung bị chắn BC , CA , AB bởi các góc A , B, C
a) Chứng minh : AP QR
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân
c) Chứng minh PQ là đường trung trực của IC
d) Gọi M là giao điểm của PQ và AC. Chứng minh : IM // BC
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.