Câu 13. BRVT2009 Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ Ax, By vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thay đổi trên nửa đường tròn (M khác A, B), kẻ tiếp tuyến của nửa đường tròn lần lượt cắt Ax và By tại C và D. ① Chứng minh tứ giác ACMO nội tiếp được đường tròn. ② Chứng minh OC vuông góc với OD và 1/OC^2 +1/OD^2 =1/R^2. ③ Xác định vị trí của M để (AC + BD) đạt giá trị nhỏ nhất.
1: Xét tứ giác OACM có
góc OAC+góc OMC=180 độ
=>OACM là tứ giác nội tiếp
2: Xét (O) có
CA,CM là tiếp tuyến
nên OC là đường phân giác của góc AOM(1)
Xét (O) có
DM,DB là tiếp tuyến
nen DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>OC vuông góc OD
=>1/OM^2=1/OC^2+1/OD^2=1/R^2