Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh Trang

Cho đường tròn (O) đường kính BC = 2R, dựng tiếp tuyến Cx của (O). Trên Cx lấy điểm M, đường thẳng MB cắt (O) tại giao điểm thứ 2 là D. Dựng đường kính DE của (O), đường thẳng ME cắt ( O) tại giao điểm thứ 2 là K, BK cắt MC tại La, Chứng minh MC^2=MB.MD và 4 điểm D,K,L,M cùng nằm trên 1 đường trònb, Gọi I là giao điểm của BL, BC. Chứng minh M,O,I thẳng hàngc, Hãy tìm vị trí của M trên Cx để diện tích tam giác IBC lớn nhất

Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 18:22

a) Xét (O) có 

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

BC là nửa đường tròn(BC là đường kính)

Do đó: \(\widehat{BDC}=90^0\)(Hệ quả)

Xét ΔBDC có \(\widehat{BDC}=90^0\)(cmt)

nên ΔBDC vuông tại D(Định nghĩa tam giác vuông)

⇒CD⊥BD tại D

hay CD⊥BM tại D

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCM vuông tại C có CD là đường cao ứng với cạnh huyền BM, ta được:

\(MC^2=MB\cdot MD\)(đpcm)


Các câu hỏi tương tự
Lili
Xem chi tiết
Phạm Tuấn Anh
Xem chi tiết
Nguyễn Hoàng My
Xem chi tiết
nguyenlambach
Xem chi tiết
 Huyền Trang
Xem chi tiết
Lạc Đồng
Xem chi tiết
Hà Nguyễn
Xem chi tiết
Nguyễn Thị Minh Châu
Xem chi tiết
illumina
Xem chi tiết