Từ điểm A nằm ngoài (O;R) vẽ các tiếp tuyến AM,AN (M,N là 2 điểm). MN cắt AO tại H. a) chứng minh 4 điểm A,M,O,N cứng thuộc đường tròn. Xác định tâm I và bán kính của đường tròn. b) chứng minh OA vuông góc MN tại H là trung điểm của MN. c) chứng minh AM2=AH.AO=OA2-R2. d) vẽ đường kính MD của (O). Chứng minh ND song song OA và 2OH=ND
Cho (O), từ điểm A nằm ngoài (O), kẻ hai tiếp tuyến AB, AC (B,C là tiếp điểm), I là giao điểm của OA và BC
a) Chứng minh \(BC=2BI\)
b) Kẻ đường kính CD, từ O kẻ đường thẳng vuông góc với AD tại H và cắt đường thẳng CB tại E. Chứng minh \(OH.OE=OI.OA\)
c) Chứng minh ED là tiếp tuyến của (O)
cho đường tròn tâm O bán kính r và 1 điểm A sao cho OA bằng 2R, vẽ các tiếp tuyến AB và Ac với đường tròn kẻ đường kính kính BD a) chứng minh DC//OA b) cho đường trung trực của BD cắt AC và CD tại S và E. Cm OCEA là hình thang cân c) gọi I là giao điểm OA với (O). Cm SI à tiếp tuyến (O) d) tia SI cắt AB tại K. Cm tứ giác AKOS là hình thoi
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
5/ Cho đường tròn tâm O, bán kính OA=R. Gọi I là trung điểm của OA, đường thẳng vuống góc với OA tại I cắt đường tròn (O) tại C và D
a/ Chứng minh IC=ID b/Tính số đo \(\widehat{COA}\) c/ Tiếp tuyến tại C của đường tròn (O) cắt tia OA tại M. Tính diện tích tam giác ACM biết bán kính R=5
cho đường tròn tâm O đường kính AB=2R. gọi I là trung điểm của oa, qua i kẻ dây MN vuông góc với OA. điểm C thuộc cung nhỏ BM (C ≠ B, C ≠ M); AC cắt MN tại D.
a) Chứng minh BICD nội tiep đường tròn
b) Chứng minh AD.AC = R2
huhu giúp mih vứi mih sắp thi ùi
Cho (O) bán kính OA = 6 cm, H là trung điểm của OA, đường thẳng vuông góc với OA tại H cắt (O) tại B và C, tiếp tuyến của (O) tại B cắt OA tại M
a Tính MB
b OBAC là hình gì? vì sao?
c) Chứng minh MC là tiếp tuyến của (O)
GIẢ TAM GIÁC OBMC/M TỨ GIÁC OBAC LÀ HÌNH THOIC/M MC LÀ ĐƯỜNG TIẾP TUYỀN CỦA DƯỜNG TRÒN O
Cho (O) có đường kính AB=2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi E là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AE và MN CMR: MA là tiếp tuyến của đường tròn ngoại tiếp tam giác AMH.