a) Xét \(\Delta OAB\) và \(\Delta OAC\) có:
OA chung
OA = OC = R
AB = AC (do \(\Delta ABC\) cân tại A)
\(\Rightarrow \Delta OAB=\Delta OAC\) (c.c.c)
\(\Rightarrow \widehat{AOB}=\widehat{AOC}\)(hai góc tương ứng)
\(\Rightarrow \) sđ\(\overset\frown{AB}=\) sđ \(\overset\frown{AC}\)
\(\Rightarrow \overset\frown{AB}=\overset\frown{AC}\)
b) Độ dài cung BC là:
\(\frac{{70}}{{180}}.\pi .4 = \frac{{14}}{9}\pi \approx \frac{{14}}{9}.3,14 \approx 4,9 \)(cm)
Ta có: \(\widehat {AOB} + \widehat {AOC} + \widehat {BOC} = 360^\circ \)
\(\begin{array}{l} \Rightarrow 2.\widehat {AOB} + 70^\circ = 360^\circ \\ \Rightarrow 2.\widehat {AOB}\,\, = 290^\circ \\ \Rightarrow \,\,\,\,\,\,\widehat {AOB}\,\, = 145^\circ \end{array}\)
Độ dài cung AB và cung AC là: \(\frac{{145}}{{180}}.\pi .4 = \frac{{29}}{9}\pi \approx \frac{{29}}{9}.3,14 \approx 10,1 \)(cm)