Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?
Cho đường tròn (O), 1 điểm nằm bên ngoài đường tròn. Vẽ tiếp tuyến MB và MC với (O), MO cắt BC ở I và cắt đường tròn ở K. C/m:
a, Tứ giác MBDC nội tiếp
b, BK là phân giác của \(\widehat{MBC}\)
c, \(\dfrac{KI}{KM}=\dfrac{BI}{BM}\)
d, K là tâm đường tròn nội tiếp ΔMBC
Cho đường tròn tâm O bán kính R=6cm và điểm A cách O một khoảng 10cm từ A vẽ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến bất kỳ ADC ( C nằm giữa A và D) gọi I là trung điểm của đoạn CD
a) tính độ dài AB, số đo góc OAB
b) chứng minh: bốn điểm A,B,O và I cùng thuộc 1 đường tròn
c) chứng minh: AC.AD=AI^2-IC^2. Từ đó suy ra tính AC.AD không đổi khi C thay đổi trên đường tròn (O)
Cho (O; R) và một điểm A ở ngoài đường tròn . Từ A kẻ hai tiếp tuyến AP và AQ với (O) (P; Q là các tiếp điểm).Qua P kẻ đường thẳng song song với AQ cắt (O) tại M . Gọi N là giao điểm thứ hai của đường thẳng AM và đường tròn (O). 1) Cm tứ giác APOQ nội tiếp 2) Cm : AP2 = AM . AN 3) Kẻ đường kính QS của đường tròn (O). Gọi H là giao điểm của NS và PQ, I là giao điểm của QS và MN. a) Cm NS là tia phân giác của góc PNM b) Cm HI // PM
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA,SB của đường tròn (O;R) (với A,B là tiếp điểm). Đường thẳng a đi qua S (không đi qua tâm O) cắt đường tròn(O;R) tại hai điểm M,N (M nằm giữ S và N). a) CM: SO ⊥ AB b) Gọi I là trung điểm của MN và H là giao điểm của SO,AB ;hai đường thẳng OI và AB cắt nahu tại E.CM: OI.OE=R2 (vẽ hộ em hình luôn ạ)
Cho đường tròn tâm (O), bán kính R ngoại tiếp đa giác dêdu của đường tròn A. Tính bán kính của đường tròn ngoại tiếp đa giác đó (A;R) trong trường hợp a, đa giác là tam giác đều b, đa giác là hình vuông c, đa giác là lục giác đều
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếng tuyến AM và AN tới đường tròn (M,N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O;R) tại B và C (AB<AC). Gọi I là trung điểm của BC.
Đường thẳng đi qua B, song song với AM, cắt MN tại E. CMR: IE song song MC
Mỗi câu sau đây đúng hay sai ?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy
e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy
g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó
Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2