Cho đường tròn (0, R) và hai đường kính AB, CD vuông góc với nhau. Trên đoạn OB lấy điểm I. Tia Cl cắt đường tròn (0) tại điểm thứ hai là E. 1) Biết sđ cung DE = 50 độ. Tính số đo góc DCE và góc BOE, 2) Chứng minh 4 điểm: OIED cùng thuộc 1 đường tròn, b) Nối AE cắt CD tại H. Chứng minh: HD.IE= BI.DE
1: sđ cung DE=50 độ
=>góc DOE=50 độ
=>góc DCE=50/2=25 độ; góc BOE=90-50=40 độ
2: Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
Xét tứ giác IODE có
góc IOD+góc IED=180 độ
=>IODE là tứ giác nội tiếp