Vì AB không song song với d nên AB cắt d tại N
Với \(M\in d\) thì ta có ΔMAB
Xét ΔMAB có |MA-MB|<AB
Nếu M trùng với N thì |MA-MB|=AB
=>Để |MA-MB| lớn nhất thì M trùng với N
Vì AB không song song với d nên AB cắt d tại N
Với \(M\in d\) thì ta có ΔMAB
Xét ΔMAB có |MA-MB|<AB
Nếu M trùng với N thì |MA-MB|=AB
=>Để |MA-MB| lớn nhất thì M trùng với N
Cho hai điểm A và B nằm về hai phía của đường thẳng d. Tìm điểm C thuộc đường thẳng d sao cho tổng AC + CB là nhỏ nhất ?
1. Cho △ABC, M là điểm nằm trong △ABC. Gọi I là giao điểm của BM và AC. Chứng minh rằng:
a) MA + MB < IA + IB
b) MA + MB < AC + BC
2. Cho 2 điểm A, B nằm ngoài đường thẳng d và cùng nằm trên nửa mặt phẳng bờ d. Xác định vị trí điểm M trên đường thẳng d để AM + BM nhỏ nhất.
3. Cho △ABC (AB > AC). Tia phân giác của \(\widehat{BAC}\) cắt BC tại D. M là điểm nằm trên đoạn thẳng AD. Chứng minh rằng MB - MC < AB - AC
Bài 8: Cho tam giác ABC vuông tại A coa AB = 6cm, AC = 8cm. Vẽ đường trung trực xy của AC , xy cắt AC tại D. Lấy điểm M bất kỳ trên xy.
a) Chứng minh:MA+MB>=10 .
b) Xác định vị trí của M trên xy để MA + MB nhỏ nhất.
Cho tam giác ABC vuông tại A có AB=3;AC=4. Gọi I là trung điểm của AC, d là đường trung trực của AC và M là điểm tùy ý trên d. CMR:MA+MB ≥ 5.
Nhanh lên một chút với ạ, mình đang cần gấp ý. Cảm ơn ạ
Cho ∆ABC vuông tại A, có AB=3cm, BC=5cm. a) Tính độ dài AC. So sánh các góc của ∆ABC b) Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD. Chứng minh rằng: ∆ABM=∆CDM. c) Chứng minh 2.BM < AB + BC VẼ HÌNH VÀ GIẢI GIÚP MÌNH VỚI 😭
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
Cho tam giác ABC có B=60 độ C=40 độ a.tính số đo a của tam giác ABC b.trên tia BC lấy điểm D sao cho BD=BA. Lấy E là trung điểm của AD chứng minh Tam giác ABE= tam giác DBE c.qua C vẽ đường thẳng song song với BE cắt AD kéo dài tại K Chứng minh CK vuông góc AD giúp với
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC