Lời giải:
Gọi $I$ là trung điểm của $AB$ thì \(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
Ta có: \(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|=\sqrt{3}\)
\(\Leftrightarrow |2\overrightarrow{MI}|=\sqrt{3}\Leftrightarrow |\overrightarrow{MI}|=\frac{\sqrt{3}}{2}\)
Vậy tập hợp điểm M nằm trên đường tròn tâm $I$ là trung điểm của $AB$ bán kính \(\frac{\sqrt{3}}{2}\)