Gọi H,K,I lần lượt là trung điểm AB,AC,BC\(\Rightarrow\) HK,KI,HI là các đ/TB \(\Delta ABC\) \(\Rightarrow\frac{HK}{BC}=\frac{1}{2},\frac{KI}{AB}=\frac{1}{2},\frac{HI}{AC}=\frac{1}{2}\) (1)
Vì M,N,P là trọng tâm của \(\Delta OBC,\Delta OAC,\Delta OAB\)
\(\Rightarrow\frac{OM}{OI}=\frac{ON}{OK}=\frac{OP}{OH}=\frac{2}{3}\)
Áp dụng Thales\(\Rightarrow NP\) //HK,MN//KI,MP//HI
\(\Rightarrow\frac{NP}{HK}=\frac{MN}{KI}=\frac{MP}{HI}=\frac{2}{3}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{NP}{BC}=\frac{MN}{AB}=\frac{MP}{AC}=\frac{1}{3}\Rightarrow\Delta ABC\sim\Delta MNP\)