Cho tam giác ABC vuông tại A, ẻ đường cao AH ( H \(\in\)BC), biết AB=9cm, AC=12cm. Gọi M,N lần lượt là trung điểm của AB,AC.
a. CMR: \(\Delta AMN\sim\Delta ABC\)
b. Tính BC, AH?
c. Qua N kẻ NP // AB (P\(\in\)BC). Chứng minh rằng \(\dfrac{S_{NPC}}{S_{ABC}}\)
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.
Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)
Bài 39:Cho tam giác ABC có A',B',C' lần lượt là trung điểm của BC,AC,AB và G là trọng tâm tam giác đó.Gọi M,N,P lần lượt là trung điểm của AG,BG,CG.Chứng minh:
a)Tam giác ABC và A'B'C' đồng dạng.
b)Tam giác MNP đồng dạng với tam giác A'B'C'.Tìm tỉ số đồng dạng(bằng 2 cách khác nhau).
Bài 39:Cho tam giác ABC có A',B',C' lần lượt là trung điểm của BC,AC,AB và G là trọng tâm tam giác đó.Gọi M,N,P lần lượt là trung điểm của AG,BG,CG.Chứng minh:
a)Tam giác ABC và A'B'C' đồng dạng.
b)Tam giác MNP đồng dạng với tam giác A'B'C'.Tìm tỉ số đồng dạng(bằng 2 cách khác nhau).
Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh đáy BC, N là hình chiếu vuông góc của M trên cạnh AC và O là trung điểm của MN.
Chứng minh rằng:
1/ Tam giác AMC đồng dạng với tam giác MNC;
2/ AM.NC=OM.BC
3/AO vuông góc với BN
cho △ABC kẻ Đường Thẳng a// BC và cắt hai cạnh AB,AC theo thứ tự tại M và N, chứng Minh △AMN ∼ Δ ABC
Cho Tam Giác ABC Vuông Tại A, AB= 9cm; AC=12cm .Đường Cao AM Và Phân Giác BN. Gọi K Là Giáo Điểm Của AM VÀ BN a) Chứng Mình Tâm Giác MBA Đồng Dạng ABC b) Tính BG , MA
Bài 1:Cho ΔABC có O là điểm nằm trong tam giác.Gọi M,N,P lần lượt là trung điểm của OA,OB,OC.Chứng minh ΔMNP đồng dạng với ΔABC
Bài 2:Cho góc xOy khác góc bẹt.Trên Ox lấy 2 điểm A và B Sao cho OA=3,OB=6.Trân Oy lấy C và D sao cho OC=4,OD=8.
a)Chứng minh ΔOAD đồng dạng ΔOCB.
b)Gọi I là giao điểm của AD và BC.Chứng minh ΔAIM và ΔCID có các góc bằng nhau.
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HCA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ