Bài 4: Cho góc nhọn xOy, phân giác Ot. lấy M trong góc xOy. Từ M hạ MA vuông góc với Ox, MB vuông góc với Oy. Góc C là giao điểm của MA và Ot. Từ C hạ CD vuông góc với Oy.
a, So Sánh MB và MD
b,Chứng minh MB < MA
Cho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai ?
(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d
(B) Có duy nhất một đường xiên kẻ từ điểm A đến đường thẳng d
(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d
(D) Có vô số đường xiên kẻ từ điểm A đến đường d
Hãy vẽ hình minh hoạ cho các khẳng định đúng ?
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Qua điểm A không thuộc đường thẳng d, kẻ đường vuông góc AH và các đường xiên AB, AC đến đường thẳng d (H, B, C đều thuộc d). Biết rằng HB < HC. Hãy chọn khẳng định đúng trong các khẳng định sau :
(A) AB > AC (B) AB = AC
(C) AB < AC (D) AH > AB
Cho tam giác ABC vuông tại A. AH vuông với BC (H thuộc BC)
Vẽ điểm M sao cho AB là đường trung trực của MH, MH cắt AB tại I
Vẽ điểm N sao cho AC la đường trung trực của NH, NH cắt AC tại K
a) CMR:A là trung điểm của MN
b) CMR:BM//CN
c) CMR:KI//MN
Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân các đường vuông góc kẻ tử A và C đến đường thẳng BD. So sánh AC với tổng AE + CF ?