Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2
Cho đường tròn (O; R) , dây AB cố định (AB không đi qua O). I là trung điểm của AB. Trên cung lớn AB lấy 1 điểm C. Các đường cao AD, BE cắt nhau tại H và cắt đường tròn tại điểm thứ hai lần lượt ở M và N. Gọi K là trung điểm của CH. Chứng minh:
a) Tứ giác ABDE nội tiếp
b) MN // DE.
c) Đoạn thẳng CK có độ dài không đổi khi C di chuyển trên cung lớn AB.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?
cho (o) 1 dây ab lấy c thuộc tia ba từ c kẻ tiếp tuyến với đường tròn d lá điểm chính giữa của cung lớn dm cắt ab tại e
Từ A nằm ngoài (O), kẻ tiếp tuyến AB, AC đến đường tròn (B,C là tiếp điểm). Vẽ đường kính BD của đường tròn (O), tiếp tuyến tại D xủa (O) cắt BC tại E. OE cắt AD ở N. CM: AONC nội tiếp
Cho tam giác ABC cân tại B có AB < AC nội tiếp trong đường tròn (O). Gọi (d) là tiếp tuyến với đường tròn tại điểm A. Một đường thẳng song song với (d) cắt các cạnh AB, AC và đường thẳng BC lần lượt tại D, E và I. a) Chứng minh rằng số do hai cung nhỏ BA và BC bằng nhau. b) Chứng minh rằng góc ABC = AED. c) Chứng minh tứ giác BCED nội tiếp. d) Chứng minh rằng IB.IC =
bài 1. cho hình thang cân ABCD (AB>CD, AB|| CĐ )nội tiếp trong đường đường tròn (ô ) kẻ các tiếp tuyến với đường tròn (o )tại A và D chúng cắt nhau ở E . gọi M là giao điêm của 2 đuờng chéo AC va BD
1 CM tứ giác AEDM nội tiếp được ổng một đường tròn .
2 CM AB ||EM
3 đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K . CM M là trung điểm của HK
Cho △ABC nhọn vẽ đường tròn tâm O, đường kính BC cắt AB và AC tại E và D.
a) CM △BEC và △BDC vuông
b) AE.AB=AD.AC
c) Điểm I ∈ BD, K ∈ CE. Sao cho \(\widehat{AIC}=\widehat{AKB}=90^o\). Chứng minh AI=AK
Trong đường tròn (O; R) cho một dây AB bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp (điểm C và điểm A ở cùng một phía đối với BO). Tính các cạnh của tam giác ABC và đường cao AH của nó theo R