Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng : \((\dfrac{a+b+c}{b+c+d})^3=\dfrac{a}{d}\)
Cho a , b , c , d ∈ Z , trong đó b là trung bình cộng của a và c và \(\dfrac{1}{c}\) = \(\dfrac{1}{2}\) . \((\dfrac{1}{b} + \dfrac{1}{d} )\) .
Chứng minh rằng 4 số a , b , c , d lập thành một tỷ lệ thức .
Cho a , b , c , d là 4 số khác nhau , khác 0 thỏa mãn điều kiện : b2 = ac ; c2 = bd và b3 + c3 + d3 ≠ 0 . Chứng minh rằng :\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{b}\)
Cho A = \(\dfrac{\left(3\dfrac{2}{15}+\dfrac{1}{5}\right):2\dfrac{1}{2}}{\left(5\dfrac{3}{7}-2\dfrac{1}{4}\right):4\dfrac{43}{56}}\) ; B = \(\dfrac{1,2:\left(1\dfrac{1}{5}.1\dfrac{1}{4}\right)}{0,32+\dfrac{2}{25}}\)
Chứng minh rằng A= B
Cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) khác 1 (a, b, c, d khác 0)
Chứng minh: \(\dfrac{a-b}{a}\) = \(\dfrac{c-a}{c}\)
So sánh :
a) Chứng minh rằng : M = \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.......+\dfrac{1}{100!} \)
Chứng minh rằng : M <1 .
b) Chứng minh rằng : N = \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+........+\dfrac{9}{1000!}\)
Chứng minh rằng : N < \(\dfrac{1}{9!}\)
Bài 2:Tìm x biết:
a)\(\dfrac{1}{7}+x=\dfrac{-2}{3}\)
b)\(\dfrac{-2}{3}:x=\dfrac{-5}{6}\)
c)\(\left\{\dfrac{3}{5}-2x\right\}.\dfrac{5}{8}=1\)
d)\(\dfrac{3}{4}+\dfrac{2}{5}x=\dfrac{29}{60}\)
e)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
f)\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
g)\(\left|X+\dfrac{1}{3}\right|-4=\dfrac{-1}{2}\)
h)\(\left(\dfrac{1}{32}\right)^x.8^{2x}=512\)
i)\(5,3x+\left(-3,3\right)x+1,7=-4,9\)
Chứng minh rằng: \(\dfrac{1}{3^2}^{ }+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
Làm nhanh và hay mình tích cho.
1. Giải thích tại sao các p/s sau đây bằng nhau:
a) \(\dfrac{-21}{28}=\dfrac{-39}{52}\) b) \(\dfrac{-1717}{2323}=\dfrac{-171717}{232323}\)
2. Có thể có phân số \(\dfrac{a}{b}\)(a,b là số nguyên, b khác 0) sao cho :
\(\dfrac{a}{b}=\dfrac{a.m}{b.n}\)(m,n là số nguyên ; m,n khác 0 và m khác n) hay không ?
3.Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\)là phân số tối giản (n là số tự nhiên)
4.Cộng cả tử và mẫu của \(\dfrac{23}{40}\)với cùng một STN n rồi rút gọn, ta được \(\dfrac{3}{4}\). Tìm số n
5.Tìm phân số có mẫu bằng 7, biết rằng khi cộng tử với 26, nhân mẫu với 5 thì giá trị của phân số đó không thay đổi
6.Cho S=\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
Hãy so sánh S và \(\dfrac{1}{2}\)
7. Tính nhanh
M=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
8. Chứng minh rằng tổng của một phân số dương với số nghịch đảo của nó thì không nhỏ hơn 2
9. So sánh : A=\(\dfrac{10^8+2}{10^8-1}\); B=\(\dfrac{10^8}{10^8-3}\)
Giúp vs ~