a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE chung
DO đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF\(\sim\)ΔABC
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc BAE chung
DO đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF\(\sim\)ΔABC
Cho \(\Delta\)ABC có 3 góc nhọn (AB<AC).Kẻ các đường cao AD,BE,CF cắt nhau tại H.Chứng minh:
a) \(\Delta\)ABE đồng dạng với \(\Delta\)ACF
b) AF.AB=AE.AC
c) \(\Delta\)AEF đồng dạng với \(\Delta\)ABC
d) \(\Delta\)EBC đồng dạng với \(\Delta\)DAC
e) EH là phân giác của góc DEF
1. Cho \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}=\widehat{D}=90\)o. Hãy Bổ sung các yếu tố về góc và cạnh để hai tam giác đó bằng nhau.
2. Cho \(\Delta ABC\) và \(\Delta A'B'C'\) đồng dạng với nhau theo ti số k. Gọi AH, A'H' lần lượt là đường cao của\(\Delta ABC\) và\(\Delta A'B'C'\)
Cmr: a) \(\Delta ABH\sim\Delta A'B'H'\)
b) \(\dfrac{AH}{A'H'}=k\)
c) \(\dfrac{\Delta ABC}{\Delta A'B'C'}=k\)
Cho \(\Delta\)ABC cân tại A, BC = 2a, M là trung điểm BC. Lấy D và E trên AB và AC sao cho \(\widehat{DME}=\widehat{B}\). CM :
a) \(\Delta BDM\sim\Delta CME\)
b) \(\Delta MDE\sim\Delta DBM\)
c) BD*CE ko đổi
Cho ΔABC có \(\widehat{A}\)= 2\(\widehat{B}\), AC = 4,5cm,
BC = 6cm. Trên tia đối của tia AC lấy điểm E
sao cho AE = AB
a, C/m: ΔABC ∼ ΔBEC
b, Tính AB
cho tam giác nhọn ABC có các đường cao AD, BE và CF đồng quy tại H. Chứng minh:
a, tam giác AEF đồng dạng với tam giác ABC
b, H là giao điểm các đường phân giác của tam giác DEF
c, BH.BE + CH.CF = BC2
Cho tan giác nhọn ABC. Gọi O là giao điểm của ba đường cao AH, BK và CI. Chứng minh rằng :
a) OK.OB = OI.OC
b) ΔOKI đồng dạng với ΔOCB
c) ΔBOH đồng dạng với ΔBCK
d) BO.BK + CO.CI = BC²
Mọi người giúp e với ạ! E đag cần gấp
Cho tam giác ABC, kẻ tia phân giác AD. Qua B kẻ Bx sao cho ^xBC=^CAD. Tia Bx cắt AD ở E. Chứng minh:
a) ΔABE=ΔADC
b) BE2 = ED x AE
Cho tam giác ABC , đường cao AD, BE,CF cắt nhau tại H
a:Chứng minh tam giác AEB đồng dạng tam giác AFC, AE×AC=AB×AF.Từ đó chứng minh tam giác AEF đồng dạng tam giác ABC
b:Chứng minh tam giác AEH đồng dạng với tam giác BDH. Từ đó chứng minh HA×HD=HB×HE=HC×HF
c:Chứng minh tam giác EHD đồng dạng với tam giác AHB.Từ đó chứng minh H là giao điểm của 3 đường phân giác trong tam giác DEF
d:HD/AD+HE/BE+HF/CF=1
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng: a) AF . AB = AE . AC; b) HB . HE = HF . HC; c) BF . BA = BH . BE; d) CH . CF = CE . CA; e) EB . EH = EA . EC; f) FC . FH = FA . FB. Xin hãy giúp mình với ạ. Xin cảm ơn!