+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)
+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)
=>MC=AB
=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB
+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)
+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)
=>MC=AB
=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB
Cho \(\Delta ABC\), gọi I là trung điểm của cạnh AC. Tìm điểm M thỏa mãn điều kiện: \(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IC}-\overrightarrow{CM}=\overrightarrow{0}\)
Can u help me???
please, luv u (tymtymtym)
cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn:
a) \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\)
b) \(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}-\overrightarrow{MB}\right|\)
Các bạn làm ơn giúp mình câu này với: Cho tam giác ABC. Tìm tập hợp các điểm M thỏa:
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
Cho \(\Delta ABC\). Tìm tập hợp điểm M sao cho:
\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho tam giác đều ABC cạnh a. Tìm khẳng đinh đúng
A.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\) D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
E thấy người ta giải mà chỗ này e không hiểu. Mọi người giải thích giúp e ạ.
Cho tam giác ABC, tìm tập hợp những điểm M thỏa mãn:
\(\left|3\overrightarrow{MA}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho hình vuông ABCD có tâm O, cạnh bằng a
a/ Cmr \(4\overrightarrow{AB}+2016\overrightarrow{AC}+4\overrightarrow{AD}=2020\overrightarrow{AC}\)
b/ Tìm \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\) và tính \(\left|2017\overrightarrow{u}\right|\)
c/ Tính \(\left|\overrightarrow{BC}+\overrightarrow{AB}\right|\) và \(\left|\overrightarrow{OC}-\overrightarrow{OD}\right|\)
d/ Xác định M biết \(4\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)
Cho 2 vecto \(\overrightarrow{a},\overrightarrow{b}\ne0\). Tìm điều kiện của \(\overrightarrow{a},\overrightarrow{b}\) để:
a) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)
Cho tam giác ABC đều cạnh a. Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) ; \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)