Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
42- Hà Vy Nguyễn Thị

Cho ∆DEF vuông tại D, đường cao DH. Biết EH=9 cm, HF=16 cm

a. Tính DH, DE, DF, góc F

b. Trên tia đối của tia DE lấy điểm I sao cho góc DFI = 30° (Vẽ đúng số đo). Tính DI, IF

c. Vẽ DK là phân giác góc HDK (K thuộc EF) M là hình chiếu của F lên DK. Chứng minh: 1/FM^2 = 1/FD^2 + 1/FK^2

Giúp mình câu c với ạ, lm hoài mà ko ra 😭😭😭😭😭

a: Xét ΔDEF vuông tại D có DH là đường cao

nên \(DH^2=HE\cdot HF\)

=>\(DH^2=9\cdot16=144=12^2\)

=>DH=12(cm)

ΔDHE vuông tại H

=>\(DH^2+HE^2=DE^2\)

=>\(DE^2=9^2+12^2=81+144=225=15^2\)

=>DE=15(cm)

ΔDHF vuông tại H

=>\(DH^2+HF^2=DF^2\)

=>\(DF^2=12^2+16^2=144+256=400=20^2\)

=>DF=20(cm)

Xét ΔDEF vuông tại D có sin F\(=\frac{DE}{EF}=\frac{15}{25}=\frac35\)

nên \(\hat{F}\) ≃37 độ

b: Xét ΔDFI vuông tại D có tan DFI\(=\frac{DI}{DF}\)

=>\(\frac{DI}{20}=\tan30=\frac{1}{\sqrt3}\)

=>\(DI=\frac{20}{\sqrt3}=\frac{20\sqrt3}{3}\) (cm)

ΔDFI vuông tại D

=>\(DF^2+DI^2=FI^2\)

=>\(FI^2=20^2+\left(\frac{20\sqrt3}{3}\right)^2=400+\frac{400}{3}=\frac{1600}{3}\)

=>\(FI=\sqrt{\frac{1600}{3}}=\frac{40\sqrt3}{3}\) (cm)

c: Sửa đề: DK là phân giác của góc HDF

Xét ΔDHF có DK là phân giác

nên \(\frac{KH}{DH}=\frac{KF}{DF}\)

=>\(\frac{KH}{12}=\frac{FK}{20}\)

=>\(\frac{KH}{3}=\frac{KF}{5}\)

mà KH+KF=HF=16cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{KH}{3}=\frac{KF}{5}=\frac{KH+KF}{3+5}=\frac{16}{8}=2\)

=>\(KF=2\cdot5=10\left(\operatorname{cm}\right);KH=2\cdot3=6\left(\operatorname{cm}\right)\)

ΔKHD vuông tại H

=>\(KH^2+HD^2=KD^2\)

=>\(KD^2=6^2+12^2=36+144=180\)

=>\(KD=6\sqrt5\)

Xét ΔKHD vuông tại H và ΔKMF vuông tại M có

\(\hat{HKD}=\hat{MKF}\) (hai góc đối đỉnh)

Do đó: ΔKHD~ΔKMF

=>\(\frac{HD}{MF}=\frac{KD}{KF}\)

=>\(\frac{12}{FM}=\frac{6\sqrt5}{10}\)

=>\(FM=12\cdot\frac{10}{6\sqrt5}=\frac{120}{6\sqrt5}=\frac{20}{\sqrt5}=4\sqrt5\) (cm)

\(\frac{1}{FD^2}+\frac{1}{FK^2}=\frac{1}{20^2}+\frac{1}{10^2}=\frac{1}{400}+\frac{1}{100}=\frac{5}{400}=\frac{1}{80}\)

\(\frac{1}{FM^2}=\frac{1}{\left(4\sqrt5\right)^2}=\frac{1}{80}\)

Do đó: \(\frac{1}{FD^2}+\frac{1}{FK^2}=\frac{1}{FM^2}\)


Các câu hỏi tương tự
Hà Đức Duy
Xem chi tiết
David Huỳnh
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
Phan Hoàng
Xem chi tiết
Tam Akm
Xem chi tiết
baiop
Xem chi tiết
Huynh Ngoc
Xem chi tiết
Rosie
Xem chi tiết
Quỳnh My
Xem chi tiết