Bài 1. Dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2}\). Tính \({u_{n + 1}}\). Từ đó hãy so sánh \({u_{n + 1}}\) và \({u_n}\) với mọi \(n \in \mathbb{N}*\)

Hà Quang Minh
21 tháng 9 2023 lúc 20:59

Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)

Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)

I
21 tháng 9 2023 lúc 21:00

ta có :

\(u_n=n^2\\ =>u_{n+1}=\left(n+1\right)^2\)

ta thấy :\(n^2< \left(n+1\right)^2\) \(n\in N\)*