Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)
Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)
Đúng 0
Bình luận (0)
ta có :
\(u_n=n^2\\ =>u_{n+1}=\left(n+1\right)^2\)
ta thấy :\(n^2< \left(n+1\right)^2\) \(n\in N\)*
Đúng 0
Bình luận (0)