Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a) ABCD là một tứ giác nội tiếp;
b) \(\widehat{ABD}=\widehat{ACD};\)
c) CA là tia phân giác của góc SCB.
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
Cho đường tròn O bán kính R và 2 điểm A,B thuộc đường tròn sao cho góc AOB =60°. vẽ các tiếp tuyến tại A và B với đường tròn O cắt nhau tại S.
a. Chứng minh tứ giác OASB nội tiếp
b. Qua S kẻ cát tuyến SMN ( M nằm giữa S và N). chứng minh SM.SN=SB^2
Giúp mình vs
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại I kẻ IE vuông góc với ad A : CM DC ie nội tiếp B: ca là tia phân giác của góc bce C: gọi K là tâm của đường tròn ngoại tiếp tam giác CIE,CM : kbd thẳng hàng
Cho tam giác MNC có ba góc nhọn ,MN>MC,nội tiếp đường tròn (O;R),hai đường cao MD,CF cắt nhau tại H.
a)CM tứ giác NDHF nội tiếp
b)Tia NH cắt MC tại E.Chứng minh HE.HN=HF.HC
c)Vẽ đường kính MK của (O).Chứng minh MK vuông góc với EF
Cần gấp phần c ạ;-;
cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
Cho ΔABC vuông tại A. Nửa đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F.
Chứng minh CDEF là một tứ giác nội tiếp.