cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
Cho tam giác nhọn \(ABC\) (AB<AC) nội tiếp đường tròn (O), trực tâm H, đường cao AE. Gọi M là trung điểm của BC. Đường thẳng vuông góc với MH tại H cắt AB và AC theo thứ tự tại I và K. J là một điểm thuộc đoạn AE sao cho góc BJC=90.
a) CMR: HI=HK
b) CMR: dt(\(BJC \))^2 = dt(ABC).dt(HBC)
c) Gọi Q là một điểm trên (O) sao cho góc AQH=90. CMR 3 điểm Q,H,M thẳng hàng
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chưa nửa đường tròn vẽ tiếp tuyến Ax và By . Điểm M thuộc (O) sao cho tiếp tuyến tại M cắt Ax, By lần lượt tại C, D.
a) Cm: CD= AC+BD
b) Cm: OC vuông AM
c) Gọi E là giao điểm AM và Oc, F là giao điểmcủa BM và OD . Tứ giác MÈO là hình gì? Tại sao?
1.Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), D và E theo thứ tự là trung điểm của các cung AB, AC. Gọi giao điểm của DE với AB, DE với AC theo thứ tự là M và N
•Cho biết sđAB = 60: sđAC=100. Tính góc DCA, góc AMN?
• Gọi I là giao điểm của BE và CD, chứng minh tứ giác BDMI nội tiếp đường tròn
2.Cho hai cung AC và BD bị chắn giữa hai dây song song AB và CD trong một đường tròn. CM cung AC= cung BD
Cho nửa đường tròn tâm O đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Gọi M là điểm chính giữa cung BC, E là giao điểm AM vs OC. Chứng minh
a, tứ giác MBOE nội tiếp đường tròn
b, ME=MB
c, CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE
d, tính diện tích tam giác BME theo R
Bài I: Cho AABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R. Các phần giác của các góc ABC, JCB lần lượt cắt đường tròn tại E, F.
a) CMR: OF ⊥ AB và OF ⊥ AC
b) Gọi M là giao điểm của của OF và AB; N là giao điểm của OE và AC. CMR: Tứ giác AMON nội tiếp và tính diện tích hình tròn ngoại tiếp tứ giác này.
c) Gọi I là giao điểm của BE và CF; D là điểm đối xứng của I qua BC. CMR: ID 1 MN.