Tam giác ABC đường trung tuyến AM. Từ một điểm D bất kì trên cạnh AB vẽ đường thẳng song song với BC cắt AM, AC lần lượt tại I và E. Biết cạnh AB = 7cm, AC =10cm, AD = 3cm.
Tính AE.
Chứng minh: DI/CM=IE/BM và suy ra I là trung điểm của DE.
Gọi O là giao điểm của BE và DC. Chứng minh: O thuộc đường thẳng AM.
Kẻ ON // BC ( N thuộc EC) chứng minh: 1/ON = 1/DE + 1/BC.
Cho Δ ABC. Lấy điểm M tùy ý trên cạnh BC. Lấy N tùy ý trên cạnh AM. Đường thẳng
DE // BC (D ∈ AB, E ∈ AC). Gọi P là giao điểm của DM và BN và Q là giao điểm của CN và EM.
Chứng minh rằng: PQ // BC.
Cho tam giác ABC có AB>AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD và BA lần lượt tại F, G và K. Gọi M là giao điểm của DF với BC. Chứng minh:
a)M là trung điểm của đoạn thẳng BC
b) DA/DE = 1+BK/DF
c)Đường thẳng GE song song với BC
Cíu với.
1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD. a) Chứng minh: OA.OD = OB.OC b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD.
a) Chứng minh: OA.OD = OB.OC
b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.
Cho tam giác ABC, M là điểm trên cạnh BC sao cho MB=2MC, N là điểm trên cạnh AC sao cho NA=2NC, G là giao điểm của AM và BN. Chứng minh:
a) MN//AB.
b) \(\dfrac{GA}{GM}=\dfrac{GB}{GN}=3\)
Cho tam giác ABC. Gọi AM và AD lần lượt là đường trung tuyến và đường phân giác của tam giác ABC. Đường thẳng đối xứng với AM qua AD cắt BC tại N. Chứng minh rằng . BN/CN = AB^2/CD^2
1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD.
a) Chứng minh: OA.OD = OB.OC
b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.
MÌNH ĐANG CẦN GẤP, MNG GIÚP VỚI Ạ
Cho ΔA'B'C' và ΔABC có\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)
Trên AB lấy M sao cho AM=A'B', đường thẳng đi qua M song song với BC cắt AC tại N. Chứng minh rằng:
a) ΔAMN=ΔA'B'C'
b) ΔA'B'C' đồng dạng với ΔABC
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU