Bài 8: Cộng, trừ đa thức một biến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vcbvfb

cho đa thức \(Q\left(x\right)=x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)

tìm bậc của đa thức Q(x)

tính Q(-1/2)

Annie Scarlet
28 tháng 3 2018 lúc 21:18

Nhiều nick nhỉ! :)

vcbvfb
28 tháng 3 2018 lúc 21:14

ai giúp cho 10 like

Tuyen
25 tháng 7 2018 lúc 20:58

a)\(x\left(\dfrac{x^2}{2}-\dfrac{1}{2}x^3+\dfrac{1}{2}x\right)-\left(-\dfrac{1}{2}x^4+x^2\right)\)

\(\Leftrightarrow\dfrac{x^3}{2}-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2-\dfrac{1}{2}x^4-x^2\)

\(\Leftrightarrow\dfrac{1}{2}x^2\left(x-x^2+1\right)-x^2\)

vậy bậc của đa thức là 2

b)\(Q\left(-\dfrac{1}{2}\right)=\dfrac{1}{2}\left(-\dfrac{1}{2}\right)^2\left[-\dfrac{1}{2}-\left(-\dfrac{1}{2}\right)^2+1\right]-\left(-\dfrac{1}{2}\right)^2\)

\(=\dfrac{1}{2}.\dfrac{1}{4}\left(-\dfrac{1}{2}-\dfrac{1}{4}+1\right)-\dfrac{1}{4}=\dfrac{1}{8}.\dfrac{1}{4}-\dfrac{1}{4}\)

\(=\dfrac{1}{32}-\dfrac{1}{4}=-\dfrac{7}{32}\)


Các câu hỏi tương tự
tagmin
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Ngọc An Hy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết