a) \(P\left(x\right)+Q\left(x\right)=16x^6-3x^4+5\)
\(\Rightarrow\text{}\)\(x^5-2x^4-7+x+Q\left(x\right)=16x^6-3x^4+5\)
\(\Rightarrow Q\left(x\right)=x^5-2x^4-7+x-\left(16x^6-3x^4+5\right)\)
\(\Rightarrow Q\left(x\right)=x^5-2x^4-7+x-16x^6+3x^4-5\)
\(\Rightarrow Q\left(x\right)=-16x^6+x^5+x^4+x-12\)
b) \(P\left(x\right)-R\left(x\right)=x^4\)
\(\Rightarrow x^5-2x^4-7+x-R\left(x\right)=x^4\)
\(\Rightarrow R\left(x\right)=x^5-2x^4-7+x-x^4\)
\(\Rightarrow R\left(x\right)=x^5-3x^4+x-7\)
a) P(x)+Q(x)=16x6−3x4+5
P(x)+Q(x)=16x6−3x4+5
⇒x5−2x4−7+x+Q(x)=16x6−3x4+5x5−2x4−7+x+Q(x)=16x6−3x4+5
⇒Q(x)=x5−2x4−7+x−(16x6−3x4+5)⇒Q(x)=x5−2x4−7+x−(16x6−3x4+5)
⇒Q(x)=x5−2x4−7+x−16x6+3x4−5⇒Q(x)=x5−2x4−7+x−16x6+3x4−5
⇒Q(x)=−16x6+x5+x4+x−12⇒Q(x)=−16x6+x5+x4+x−12
b) P(x)−R(x)=x4P(x)−R(x)=x4
⇒x5−2x4−7+x−R(x)=x4⇒x5−2x4−7+x−R(x)=x4
⇒R(x)=x5−2x4−7+x−x4⇒R(x)=x5−2x4−7+x−x4
⇒R(x)=x5−3x4+x−7