Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác abc nhọn các đường cao be cf cắt nhau tại I từ B kẻ đường thẳng // với cf .đường thẳng này cắt AC tạiD
a,cm tam giác BIE đồng dạng tam giác CIE
b,cm góc ADB=góc ADE
c,cm,BD^2=AD.DE
Cho tam giác ABC các góc đều nhọn. Các đường cao AA', BB', CC' cắt nhau tại H. Gọi S1, S2, S3 lần lượt là diện tích các tam giác AB'C', BC'A', CA'B'. CM: S1/AH^2=S2/BH^2=S3/CH^2
Cho tam giác ABC các góc đều nhọn. Các đường cao AA', BB', CC' cắt nhau tại H. Gọi S1, S2, S3 lần lượt là diện tích các tam giác AB'C', BC'A', CA'B'. CM: S1/AH^2=S2/BH^2=S3/CH^2
Cho tam giác ABC các góc đều nhọn. Các đường cao AA', BB', CC' cắt nhau tại H. Gọi S1, S2, S3 lần lượt là diện tích các tam giác AB'C', BC'A', CA'B'. CM: \(\dfrac{S_1}{AH^2}=\dfrac{S_2}{BH^2}=\dfrac{S_3}{CH^2}\)
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)