△ABC có AB > AC. Tia phân giác góc A cắt BC ở D Gọi I là một điểm nằm giữa A và D. Trên AC lấy điểm E sao cho AE = AB. CMR:
a. IB = IE
b. IC > IB
Cho tam giác ABC có AB < AC. Tia phân giác góc A cắt BC ở D. Gọi I là điểm nằm giữa A và D. Trên AC lấy E sao cho AB = AE. Chứng minh IB = IE và IB < IC
Cho tam giác ABC có AB<AC. Gọi M là trung điểm của BC, CHỨNG MINH GÓC MAB>GÓC MAC. Từ đó suy ra p/giác của cóc BAC cắt cạnh BC tại 1 điểm nằm giữa B và M
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
Cho ΔABC có AB=AC, kẻ AH ⊥ BC (H ∈ BC )
a) CM: ΔAHB = ΔAHC
b) Từ H kẻ đường thẳng // với AC, cắt AB tại D. CM: ΔADH là Δ cân
c) Gọi G là giao điểm CD và AH. CM: G là trọng tâm của tam giác ABC
d) CM: AB+AC+BC> AH+BG
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM
a BE là tia phân giác của góc ABC
b AG đi qua trung điểm của DC
Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC tại D. Chứng minh rằng D nằm giữa B,M (M là trung điểm của BC)